Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Arch Microbiol ; 206(5): 221, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637410

RESUMO

Bacterial flagellin is a potent immunomodulatory agent. Previously, we successfully obtained flagellin from Escherichia coli Nissle 1917 (FliCEcN) and constructed two mutants with varying degrees of deletion in its highly variable regions (HVRs). We found that there was a difference in immune stimulation levels between the two mutants, with the mutant lacking the D2-D3 domain pair of FliCEcN having a better adjuvant effect. Therefore, this study further analyzed the structural characteristics of the aforementioned FliCEcN and its two mutants and measured their levels of Caco-2 cell stimulation to explore the impact of different domains in the HVRs of FliCEcN on its structure and immune efficacy. This study utilized AlphaFold2, SERS (Surface-enhanced Raman spectroscopy), and CD (circular dichroism) techniques to analyze the structural characteristics of FliCEcN and its mutants, FliCΔ174-506 and FliCΔ274-406, and tested their immune effects by stimulating Caco-2 cells in vitro. The results indicate that the D2 and D3 domains of FliCEcN have more complex interactions compared to the D1-D2 domain pair., and these domains also play a role in molecular docking with TLR5 (Toll-like receptor 5). Furthermore, FliCΔ274-406 has more missing side chain and characteristic amino acid peaks than FliCΔ174-506. The FliCEcN group was found to stimulate higher levels of IL-10 (interleukin 10) secretion, while the FliCΔ174-506 and FliCΔ274-406 groups had higher levels of IL-6 (interleukin 6) and TNF-α (tumor necrosis factor-α) secretion. In summary, the deletion of different domains in the HVRs of FliCEcN affects its structural characteristics, its interaction with TLR5, and the secretion of immune factors by Caco-2 cells.


Assuntos
Escherichia coli , Receptor 5 Toll-Like , Humanos , Escherichia coli/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/química , Flagelina/genética , Células CACO-2 , Simulação de Acoplamento Molecular
2.
Cell Death Dis ; 15(2): 120, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331868

RESUMO

Targeting C5aR1 modulates the function of infiltrated immune cells including tumor-associated macrophages (TAMs). The gut microbiome plays a pivotal role in colorectal cancer (CRC) tumorigenesis and development through TAM education. However, whether and how the gut flora is involved in C5aR1 inhibition-mediated TAMs remains unclear. Therefore, in this study, genetic deletion of C5ar1 or pharmacological inhibition of C5aR1 with anti-C5aR1 Ab or PMX-53 in the presence or absence of deletion Abs were utilized to verify if and how C5aR1 inhibition regulated TAMs polarization via affecting gut microbiota composition. We found that the therapeutic effects of C5aR1 inhibition on CRC benefited from programming of TAMs toward M1 polarization via driving AKT2-mediated 6-phosphofructokinase muscle type (PFKM) stabilization in a TLR5-dependent manner. Of note, in the further study, we found that C5aR1 inhibition elevated the concentration of serum IL-22 and the mRNA levels of its downstream target genes encoded antimicrobial peptides (AMPs), leading to gut microbiota modulation and flagellin releasement, which contributed to M1 polarization. Our data revealed that high levels of C5aR1 in TAMs predicted poor prognosis. In summary, our study suggested that C5aR1 inhibition reduced CRC growth via resetting M1 by AKT2 activation-mediated PFKM stabilization in a TLR5-dependent manner, which relied on IL-22-regulated gut flora.


Assuntos
Microbioma Gastrointestinal , Macrófagos , Receptor 5 Toll-Like/genética , Fosfofrutoquinases , Fosfofrutoquinase-1 , Músculos , Microambiente Tumoral
3.
PeerJ ; 12: e16716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188180

RESUMO

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Assuntos
Flagelina , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/genética , Apresentação de Antígeno , Antígeno B7-1 , Proliferação de Células , Citocinas , Flagelina/farmacologia , Glicina Desidrogenase (Descarboxilante) , Interleucina-12 , Interleucina-4 , Mucosa Intestinal , Transdução de Sinais , Receptor 5 Toll-Like/genética
4.
Fish Shellfish Immunol ; 146: 109373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272332

RESUMO

Toll-like receptor 5 (TLR5) responds to the monomeric form of flagellin and induces the MyD88-depending signaling pathway, activating proinflammatory transcription factors such as NF-κB and the consequent induction of cytokines. On the other hand, HMGB1 is a highly conserved non-histone chromosomal protein shown to interact with and activate TLR5. The present work aimed to design and characterize TLR5 agonist peptides derived from the acidic tail of Salmo salar HMGB1 based on the structural knowledge of the TLR5 surface using global molecular docking platforms. Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. Circular dichroism spectra were recorded for each peptide selected for synthesis. Only intrinsically disordered peptides (6W, 11W, and SsOri) were selected for experimental functional assay. The functional characterization of the peptides was performed by NF-κB activation assays, RT-qPCR gene expression assays, and Piscirickettsia salmonis challenge in SHK-1 cells. The 6W and 11W peptides increased the nuclear translation of p65 and phosphorylation. In addition, the peptides induced the expression of genes related to the TLR5 pathway activation, pro- and anti-inflammatory response, and differentiation and activation of T lymphocytes towards phenotypes such as TH1, TH17, and TH2. Finally, it was shown that the 11W peptide protects immune cells against infection with P. salmonis bacteria. Overall, the results indicate the usefulness of novel peptides as potential immunostimulants in salmonids.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Flagelina/farmacologia
5.
Vet Microbiol ; 289: 109960, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176089

RESUMO

Lawsonia intracellularis, a Gram-negative obligate intracellular bacterium and etiologic agent of porcine proliferative enteropathy, was observed to have a long, single, and unipolar flagellum. Bacterial flagellar filament comprises thousands of copies of the protein flagellin (FliC), and has been reported to be recognized by Toll-like receptor (TLR5) to activate the NF-κB and MAPK signaling pathways, thereby inducing the expression of proinflammatory genes. Recently, two L. intracellularis flagellin proteins, LfliC and LFliC, were reported to be involved in bacterial-host interaction and immune response. Here, to further explore the role of LfliC in proinflammatory response, we purified LfliC, and found that its exposure could activate NF-κB signaling pathway in both HEK293T and IPI-FX cells, as well as activate MAPK p38 and ERK1/2 in HEK293T cells but not in IPI-FX cells. However, our yeast two-hybrid and co-immunoprecipitation assay results revealed that LfliC has no interaction with the porcine TLR5 ECD domain though it harbors the conserved D1-like motif required for the interaction. Moreover, LfliC was identified as a substrate of the virulence-associated type III secretion system (T3SS) by using the heterologous Y. enterocolitica system. Transient expression of LfliC also activated the NF-κB and MAPK signaling pathway in HEK293T cells. Collectively, our results suggest that both the exposure and expression of L. intracellularis LfliC can induce the NF-κB and MAPK signaling pathway in mammalian cells. Our findings may provide important implications and resources for the development of diagnostic tools or vaccines and dissection of the pathogenesis of L. intracellularis.


Assuntos
Flagelina , Lawsonia (Bactéria) , Humanos , Animais , Suínos , Flagelina/genética , NF-kappa B/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Lawsonia (Bactéria)/metabolismo , Células HEK293 , Transdução de Sinais , Receptores Toll-Like/metabolismo , Mamíferos
6.
Arthritis Res Ther ; 26(1): 1, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167328

RESUMO

BACKGROUND: The biological mechanisms underlying the differential response to abatacept in patients with rheumatoid arthritis (RA) are unknown. Here, we aimed to identify cellular, transcriptomic, and proteomic features that predict resistance to abatacept in patients with RA. METHODS: Blood samples were collected from 22 RA patients treated with abatacept at baseline and after 3 months of treatment. Response to treatment was defined by the European League Against Rheumatism (EULAR) response criteria at 3 months, and seven patients were classified as responders and the others as non-responders. We quantified gene expression levels by RNA sequencing, 67 plasma protein levels, and the expression of surface molecules (CD3, 19, and 56) by flow cytometry. In addition, three gene expression data sets, comprising a total of 27 responders and 50 non-responders, were used to replicate the results. RESULTS: Among the clinical characteristics, the number of monocytes was significantly higher in the non-responders before treatment. Cell type enrichment analysis showed that differentially expressed genes (DEGs) between responders and non-responders were enriched in monocytes. Gene set enrichment analysis, together with single-cell analysis and deconvolution analysis, identified that Toll-like receptor 5 (TLR5) and interleukin-17 receptor A (IL17RA) pathway in monocytes was upregulated in non-responders. Hepatocyte growth factor (HGF) correlated with this signature showed higher concentrations in non-responders before treatment. The DEGs in the replication set were also enriched for the genes expressed in monocytes, not for the TLR5 and IL17RA pathway but for the oxidative phosphorylation (OXPHOS) pathway. CONCLUSIONS: Monocyte-derived transcriptomic features before treatment underlie the differences in abatacept efficacy in patients with RA. The pathway activated in monocytes was the TLR5 and IL17RA-HGF signature in the current study, while it was the OXPHOS pathway in the replication set. Elevated levels of HGF before treatment may serve as a potential biomarker for predicting poor responses to abatacept. These findings provide insights into the biological mechanisms of abatacept resistance, contributing valuable evidence for stratifying patients with RA.


Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Abatacepte/uso terapêutico , Monócitos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/uso terapêutico , Antirreumáticos/uso terapêutico , Transcriptoma , Proteômica , Resultado do Tratamento , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética
7.
Int J Biol Macromol ; 259(Pt 2): 129395, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218285

RESUMO

Vibrio parahaemolyticus causes diseases in aquatic organisms, leading to substantial financial losses to the aquaculture industry; its flagellin F (flaF) protein triggers severe inflammation in host cells. To enhance the understanding of the function of flaF in V. parahaemolyticus infection, in this study, a flaF-deficient mutant was constructed by employing two-step homologous recombination. The flaF-deficient mutant induced a significantly lower toll-like receptor 5 (TLR5) expression and apoptosis in fish intestinal epithelial cells than the wild-type V. parahaemolyticus. Furthermore, fluorescence labelling and microscopy analysis of TLR5 showed that V. parahaemolyticus and its mutant strain significantly enhanced TLR5 expression. Additionally, the findings suggest that flaF deletion did not significantly affect the expression of myeloid differentiation factor 88 (MyD88) and interleukin-8 (IL-8) induced by V.parahaemolyticus. In summary, V. parahaemolyticus induced a TLR5-dependent inflammatory response and apoptosis through MyD88, which was observed to be influenced by flaF deletion. In this study, we obtained stable mutants of V. parahaemolyticus via target gene deletion-which is a rapid and effective approach-and compared the induction of inflammatory response and apoptosis by V. parahaemolyticus and its mutant strain, providing novel perspectives for functional gene research in V. parahaemolyticus.


Assuntos
Perciformes , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/genética , Flagelina/genética , Flagelina/farmacologia , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Perciformes/genética
8.
Fish Shellfish Immunol ; 144: 109219, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952850

RESUMO

Based on the structural knowledge of TLR5 surface and using blind docking platforms, peptides derived from a truncated HMGB1 acidic tail from Salmo salar was designed as TLR5 agonistic. Additionally, a template peptide with the native N-terminal of the acidic tail sequence as a reference was included (SsOri). Peptide binding poses complexed on TLR5 ectodomain model from each algorithm were filtrated based on docking scoring functions and predicted theoretical binding affinity of the complex. The best peptides, termed 6WK and 5LWK, were selected for chemical synthesis and experimental functional assay. The agonist activity by immunoblotting and immunocytochemistry was determined following the NF-κBp65 phosphorylation (p-NF-κBp65) and the nuclear translocation of the NF-κBp65 subunit from the cytosol, respectively. HeLa cells stably expressing a S. salar TLR5 chimeric form (TLR5c7) showed increased p-NF-κBp65 levels regarding extracts from flagellin-treated cells. No statistically significant differences (p > 0.05) were found in the detected p-NF-κBp65 levels between cellular extracts treated with peptides or flagellin by one-way ANOVA. The image analysis of NF-κBp65 immunolabeled cells obtained by confocal microscopy showed increased nuclear NF-κBp65 co-localization in cells both 5LWK and flagellin stimulated, while 6WK and SsOri showed less effect on p65 nuclear translocation (p < 0.05). Also, an increased transcript expression profile of proinflammatory cytokines such as TNFα, IL-1ß, and IL-8 in HKL cells isolated from Salmo salar was evidenced in 5LWK - stimulated by RT-PCR analysis. Overall, the result indicates the usefulness of novel peptides as a potential immunostimulant in S. salar.


Assuntos
Proteína HMGB1 , Salmo salar , Animais , Humanos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Flagelina/farmacologia , Flagelina/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Células HeLa , NF-kappa B/metabolismo , Cauda , Citocinas/genética , Citocinas/metabolismo
9.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762236

RESUMO

Pathogen-associated molecular patterns (PAMPs) are involved in the pathogenesis of septic cardiomyopathy through a toll-like receptor (TLR)-mediated immune response. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can reflect the innate immune abilities of cardiomyocytes. Therefore, hiPSC-CMs may provide an attractive tool with which to study PAMP-induced alterations in cardiomyocytes. HiPSC-CMs from two different healthy donors were exposed to the PAMP flagellin (FLA) at different doses and exposure times. Alterations in the expression levels of distinct inflammation-associated cytokines, intracellular inflammation pathways including TLR5 downstream signaling, reactive oxygen species levels and surface antigen composition were assessed using PCR, ELISA and FACS techniques. Higher doses of flagellin increased the expression levels of inflammation-associated cytokines like TNFα (p < 0.01) and downstream signaling molecules like caspase-8 (p < 0.05). TLR5 expression (p < 0.01) and TLR5 fluorescence proportion (p < 0.05) increased in hiPSC-CMs after prolonged FLA exposure. FLA-induced innate immune response processes in cardiomyocytes might be detectable with an hiPSC-CMs-based in vitro model.


Assuntos
Flagelina , Células-Tronco Pluripotentes Induzidas , Humanos , Flagelina/farmacologia , Miócitos Cardíacos , Receptor 5 Toll-Like/genética , Imunidade Inata , Citocinas , Inflamação
10.
Int J Biol Macromol ; 249: 126048, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517756

RESUMO

Nuclear factor kappa-B (NF-κB) pathway is a key mediator of inflammation response that plays a role in host defense for pathogen elimination, but excessive activation may lead to tissue damage or pathogen transmission. The negative regulation of NF-κB in lower vertebrates is largely unknown, hindering further understanding of immune signaling evolution. Here, we provided evidence that Epinephelus coioides soluble toll-like receptor 5 (TLR5S), a member of the TLR5 subfamily, has been newly identified as a negative regulator of NF-κB signaling. EcTLR5S was a cytoplasmic protein consisting of 17 leucine-rich repeat domains, which specifically responded to Vibrio flagellin and suppressed flagellin-induced NF-κB signaling activation and cytokine expression. The amino-terminal LRR 1-5 region was necessary for its negative regulatory function. Dual-luciferase reporter assay showed that EcTLR5S significantly inhibited the NF-κB-luc activity induced by inhibitor of NF-κB kinase α (IKKα) and IKKß. Subsequently, the functional relationship between EcTLR5M and EcTLR5S was analyzed, revealing that the negative regulatory function of EcTLR5S targeted the activation of the NF-κB pathway mediated by EcTLR5M. The above results reveal that EcTLR5S negatively regulates the flagellin-induced EcTLR5M-NF-κB pathway activation, which may prevent over-activation of immune signaling and restore homeostasis.


Assuntos
Bass , Receptor 5 Toll-Like , Animais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , NF-kappa B/metabolismo , Flagelina/farmacologia , Transdução de Sinais , Quinase I-kappa B/metabolismo
11.
Int J Biol Macromol ; 244: 125404, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37327919

RESUMO

The marine pathogen Vibrio parahaemolyticus has caused huge economic losses to aquaculture. Flagellin is a key bacterial virulence factor that induces an inflammatory response via activation of Toll-like receptor 5 (TLR5) signaling. Herein, to explore the inflammatory activity of V. parahaemolyticus flagellins (flaA, flaB, flaC, flaD, flaE, and flaF), we investigated their ability to induce apoptosis in a fish cell line. All six flagellins induced severe apoptosis. Moreover, treatment with V. parahaemolyticus flagellins increased TLR5 and myeloid differentiation factor 88 (MyD88) expression and the production of TNF-α and IL-8 significantly. This indicated that flagellins might induce a TLR5-meditated immune response via an MyD88-dependent pathway. FlaF exhibited the strongest immunostimulatory effect; therefore, the interaction between TLR5 and flaF was screened using the yeast two-hybrid system. A significant interaction between the two proteins was observed, indicating that flaF binds directly to TLR5. Finally, the amino acids that participate in the TLR5-flaF interaction were identified using molecular simulation, which indicated three binding sites. These results deepen our understanding of the immunogenic properties of flagellins from V. parahaemolyticus, which could be used for vaccine development in the future.


Assuntos
Flagelina , Vibrio parahaemolyticus , Animais , Flagelina/química , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais
12.
Nucleosides Nucleotides Nucleic Acids ; 42(12): 986-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330637

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common human malignancy and the fourth most frequent cause of cancer-related deaths worldwide. Toll-like receptors (TLRs), are known to play a key role in hepatocarcinogenesis through induction of inflammation. We aimed to investigate the association between TLR2 rs3804099, TLR4 rs4986790, rs4986791, and rs11536889 and TLR5 rs5744174 and HCC risk in a total of 306 Moroccan subjects, including 152 HCC patient and 154 controls using a TaqMan allelic discrimination assay. Our result showed that the frequency of TLR4 rs11536889 C allele was higher in control group than in HCC patients (OR = 0.52, 95% CI = 0.30-0.88, p = 0.01). Moreover, under the dominant model, we observed that CG/CC genotypes were protective factors against HCC risk (OR = 0.51, 95% CI = 0.28-0.91, p = 0.02). However, no significant differences were found in the allele and genotype frequencies of TLR4 rs4986790 and rs4986791, between HCC patients and controls. Similarly, genotypic frequencies of TLR2 and TLR5 polymorphisms did not differ significantly between HCC patients and controls. However, TLR4 haplotype analysis revealed that ACC haplotype may be protective of HCC risk in patients with HCC (OR = 0.53, 95% CI = 0.31-0.92, p = 0.02). In conclusion, our result suggest that TLR4 rs11536889 polymorphism and ACC haplotype may decrease risk of hepatocellular carcinoma in Moroccan population.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 5 Toll-Like/genética
13.
Hepatol Commun ; 7(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37219858

RESUMO

BACKGROUND: HCC is the most common primary liver cancer and a leading cause of cancer-related mortality. Gut microbiota is a large collection of microbes, predominately bacteria, that harbor the gastrointestinal tract. Changes in gut microbiota that deviate from the native composition, that is, "dysbiosis," is proposed as a probable diagnostic biomarker and a risk factor for HCC. However, whether gut microbiota dysbiosis is a cause or a consequence of HCC is unknown. METHODS: To better understand the role of gut microbiota in HCC, mice deficient of toll-like receptor 5 (TLR5, a receptor for bacterial flagellin) as a model of spontaneous gut microbiota dysbiosis were crossed with farnesoid X receptor knockout mice (FxrKO), a genetic model for spontaneous HCC. Male FxrKO/Tlr5KO double knockout (DKO), FxrKO, Tlr5KO, and wild-type (WT) mice were aged to the 16-month HCC time point. RESULTS: Compared with FxrKO mice, DKO mice had more severe hepatooncogenesis at the gross, histological, and transcript levels and this was associated with pronounced cholestatic liver injury. The bile acid dysmetabolism in FxrKO mice became more aberrant in the absence of TLR5 due in part to suppression of bile acid secretion and enhanced cholestasis. Out of the 14 enriched taxon signatures seen in the DKO gut microbiota, 50% were dominated by the Proteobacteria phylum with expansion of the gut pathobiont γ-Proteobacteria that is implicated in HCC. CONCLUSIONS: Collectively, introducing gut microbiota dysbiosis by TLR5 deletion exacerbated hepatocarcinogenesis in the FxrKO mouse model.


Assuntos
Carcinoma Hepatocelular , Colestase , Neoplasias Hepáticas , Receptor 5 Toll-Like , Animais , Masculino , Camundongos , Ácidos e Sais Biliares , Carcinogênese , Disbiose , Camundongos Knockout , Receptor 5 Toll-Like/genética
14.
Fish Shellfish Immunol ; 138: 108817, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230309

RESUMO

The frequent occurrence of diseases seriously hampers the sustainable development of the spotted knifejaw (Oplegnathus punctatus) breeding industry. Our previous genome-wide scan and cross-species comparative genomic analysis revealed that the immune gene family (Toll-like receptors, TLR) members of O. punctatus underwent a significant contraction event (tlr1, tlr2, tlr14, tlr5, and tlr23). To address immune genetic contraction may result in reduced immunity, we investigated whether adding different doses (0, 200, 400, 600, and 800 mg/kg) of immune enhancers (tea polyphenols, astaxanthin, and melittin) to the bait after 30 days of continuous feeding could stimulate the immune response of O. punctatus. We found that the expression of tlr1, tlr14, tlr23 genes in immune organs (spleen and head kidney) was stimulated when tea polyphenols were added at 600 mg/kg. The tlr2 (400 mg/kg), tlr14 (200 mg/kg), tlr5 (200 mg/kg), and tlr23 (200 mg/kg) genes expression of intestine were elevated in the tea polyphenol group. When the addition of astaxanthin is 600 mg/kg, it can effectively stimulate the expression of tlr14 gene in immune organs (liver, spleen and head kidney). In the astaxanthin group, the expression of the genes tlr1 (400 mg/kg), tlr14 (600 mg/kg), tlr5 (400 mg/kg) and tlr23 (400 mg/kg) reached their highest expression in the intestine. Besides, the addition of 400 mg/kg of melittin can effectively induce the expression of tlr genes in the liver, spleen and head kidney, except the tlr5 gene. The tlr-related genes expression in the intestine was not significantly elevated in the melittin group. We hypothesize that the immune enhancers could enhance the immunity of O. punctatus by increasing the expression of tlr genes, and thereby leading to increased resistance to diseases. Meanwhile, our findings further demonstrated that significant increases in weight gain rate (WGR), visceral index (VSI), and feed conversion rate (FCR) were observed at 400 mg/kg, 200 mg/kg and 200 mg/kg of tea polyphenols, astaxanthin and melittin in the diet, respectively. Overall, our study provided valuable insights for future immunity enhancement and viral infection prevention in O. punctatus, as well as offered guidance for the healthy development of the O. punctatus breeding industry.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Animais , Receptor 2 Toll-Like/genética , Receptor 1 Toll-Like/genética , Regulação da Expressão Gênica , Receptor 5 Toll-Like/genética , Meliteno/genética , Meliteno/metabolismo , Peixes/metabolismo , Imunidade , Chá
15.
Prostate ; 83(11): 1035-1045, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37118933

RESUMO

BACKGROUND: Toll-like receptors (TLRs) are the key sensors of innate immunity for triggering immune responses against infections. TLRs are well known to be expressed and activated in innate immune cells, such as macrophage and dendritic cells, but we and others have found that some TLRs are also functional in epithelial cells. However, the role of an epithelial TLR in prostate cancer remains elusive. METHODS: TLR5 expression in messenger RNA and protein level in prostate cancer was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). The activation of TLR5 signaling in epithelial cells was detected upon nuclear factor-κB activation by luciferase assay and western blot analysis, and proinflammatory cytokine activation by RT-qPCR. Distinguishing between the TLR5 and NLRC4 pathways, both recognizing flagellin, is determined by small interfering RNA and proinflammatory cytokine activation. The role of TLR5 in prostate cancer was analyzed by IHC and bioinformatics using a general and single-cell database. RESULTS: In the present study, we show that TLR5, among other TLRs, is exceedingly expressed in human prostate cancer cells. This cancer epithelial cell TLR5 functions to activate the TLR5 signaling pathway in human prostate cancer cells, as it does with innate immune cell TLR5. The bacterial protein flagellin induces a robust immune response in prostate cancer cells in a TLR5-dependent but NLRC4-independent manner. TLR5 is highly expressed in prostate cancer patient specimens, and high TLR5 expression in prostate cancer patients indicates a favorable prognosis. CONCLUSIONS: TLR5, as an innate immunity receptor, is a functional TLR in human prostate cancer epithelial cells. TLR5 plays an important role in prostate cancer development and is a new potential prognosis biomarker. TLR5 may represent a novel immunotherapy target against prostate cancer.


Assuntos
Neoplasias da Próstata , Receptor 5 Toll-Like , Masculino , Humanos , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Flagelina/genética , Flagelina/metabolismo , Regulação para Cima , Receptores Toll-Like/genética , Citocinas/metabolismo , Neoplasias da Próstata/genética , Prognóstico
16.
Sci Adv ; 9(17): eade8928, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115935

RESUMO

Maturation of antibody responses entails somatic hypermutation (SHM), class-switch DNA recombination (CSR), plasma cell differentiation, and generation of memory B cells, and it is thought to require T cell help. We showed that B cell Toll-like receptor 4 (TLR4)-B cell receptor (BCR) (receptor for antigen) coengagement by 4-hydroxy-3-nitrophenyl acetyl (NP)-lipopolysaccharide (LPS) (Escherichia coli lipid A polysaccharide O-antigen) or TLR5-BCR coengagement by Salmonella flagellin induces mature antibody responses to NP and flagellin in Tcrß-/-Tcrδ-/- and NSG/B mice. TLR-BCR coengagement required linkage of TLR and BCR ligands, "linked coengagement." This induced B cell CSR/SHM, germinal center-like differentiation, clonal expansion, intraconal diversification, plasma cell differentiation, and an anamnestic antibody response. In Tcrß-/-Tcrδ-/- mice, linked coengagement of TLR4-BCR by LPS or TLR5-BCR by flagellin induced protective antibodies against E. coli or Salmonella Typhimurium. Our findings unveiled a critical role of B cell TLRs in inducing neutralizing antibody responses, including those to microbial pathogens, without T cell help.


Assuntos
Formação de Anticorpos , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/genética , Anticorpos Neutralizantes , Lipopolissacarídeos , Escherichia coli , Flagelina , Receptor 5 Toll-Like/genética , Linfócitos T , Receptores de Antígenos de Linfócitos B
17.
Molecules ; 28(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903639

RESUMO

Flagellin is the major component of the flagellum in gram-positive and -negative bacteria and is also the ligand for the Toll-like receptor 5 (TLR5). The activation of TLR5 promotes the expression of proinflammatory cytokines and chemokines and the subsequent activation of T cells. This study evaluated a recombinant domain from the amino-terminus D1 domain (rND1) of flagellin from Vibrio anguillarum, a fish pathogen, as an immunomodulator in human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs). We demonstrated that rND1 induced an upregulation of proinflammatory cytokines in PBMCs, characterized at the transcriptional level by an expression peak of 220-fold for IL-1ß, 20-fold for IL-8, and 65-fold for TNF-α. In addition, at the protein level, 29 cytokines and chemokines were evaluated in the supernatant and were correlated with a chemotactic signature. MoDCs treated with rND1 showed low levels of co-stimulatory and HLA-DR molecules and kept an immature phenotype with a decreased phagocytosis of dextran. We probed that rND1 from a non-human pathogen promotes modulation in human cells, and it may be considered for further studies in adjuvant therapies based on pathogen-associated patterns (PAMPs).


Assuntos
Quimiotaxia de Leucócito , Flagelina , Humanos , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Dendríticas , Flagelina/genética , Flagelina/farmacologia , Leucócitos Mononucleares/metabolismo , Fenótipo , Proteínas rho de Ligação ao GTP/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
18.
Fish Shellfish Immunol ; 136: 108716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001745

RESUMO

Toll-like receptor (TLR) is an important pattern recognition receptor, which specifically recognizes microbial components, and TLR5 recognizes bacterial flagellin in vertebrates and invertebrates. In this study, two forms of TLR5 (TLR5a and TLR5b) were identified in grass carp (Ctenopharyngodon idella). Aeromonas hydrophila and Staphylococcus aureus were used to investigate the role of grass carp TLR5a and TLR5b against bacteria (flagellate and non-flagellate) in innate immunity, and the expression of TLR5a and TLR5b genes and proteins were detected in immune-related tissues. Quantitative real-time polymerase chain reaction results showed that TLR5a and TLR5b genes of grass carp were highly expressed in the liver, spleen, and head kidney, and their expression patterns were similar in tissues. Meanwhile, the TLR5b gene expression was higher than TLR5a in most tissues. Following exposure to A. hydrophila and S. aureus, the expression levels of TLR5a and TLR5b genes in the liver, spleen, and head kidney were up-regulated significantly. Moreover, the downstream gene, NF-κB, was up-regulated significantly. After A. hydrophila infection, the expression of TLR5a gene was up-regulated in the liver and spleen at 24 h, while TLR5b was up-regulated at 6 h. In the head kidney, TLR5a was up-regulated at 6 h, while TLR5b was up-regulated at 6 h and 12 h. After S. aureus infection, TLR5a and TLR5b were up-regulated at 6 h in the liver and 12 h in the spleen. However, in the head kidney, TLR5a was down-regulated, while TLR5b was up-regulated. Compared with TLR5a, TLR5b had a higher expression level and stronger response to pathogen stimulation. The immunofluorescence results showed that TLR5a and TLR5b proteins in the liver of grass carp infected with A. hydrophila and S. aureus were similar but different in the spleen and head kidney. The results indicated that TLR5a and TLR5b play a critical role in resisting bacterial infection, and TLR5a and TLR5b had obvious tissue and pathogen specificity. TLR5b may play a major role in immune tissues, while TLR5a may play an auxiliary regulatory role in early infection. In addition, TLR5a and TLR5b have an irreplaceable regulatory role in response to flagellate and non-flagellate bacteria. This lays a foundation to explore further the role of TLR5 in resisting flagellate and non-flagellate infections in fish and provides a reference for the innate immunity research of grass carp.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpas/metabolismo , Receptor 5 Toll-Like/genética , Staphylococcus aureus/metabolismo , Imunidade Inata , Aeromonas hydrophila/fisiologia , Proteínas de Peixes
19.
Am J Physiol Cell Physiol ; 324(5): C1028-C1038, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847442

RESUMO

Inappropriate activation of Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NOD) is involved in many chronic disorders, including inflammatory bowel disease (IBD). Altered function and/or expression of Na+,K+-ATPase (NKA) and epithelial ion channels are the main cause of electrolyte absorption imbalance in patients with IBD, leading to diarrhea. We aimed to evaluate the effect of TLRs and NOD2 stimulation upon NKA activity and expression in human intestinal epithelial cells (IECs) using RT-qPCR, Western blot, and electrophysiology techniques. TLR2, TLR4, and TLR7 activation inhibited NKA activity [(means ± SE) -20.0 ± 1.2%, -34.0 ± 1.5%, and -24.5 ± 2.0% in T84 cells; and -21.6 ± 7.4%, -37.7 ± 3.5%, and -11.0 ± 2.3% in Caco-2 cells]. On the other hand, activation of TLR5 increased NKA activity (16.2 ± 2.9% in T84 and 36.8 ± 5.2% in Caco-2 cells) and ß1-NKA mRNA levels (21.8 ± 7.8% in T84 cells). The TLR4 agonist synthetic monophosphoryl lipid A (MPLAs) reduced α1-NKA mRNA levels in both T84 and Caco-2 cells (-28.5 ± 3.6% and -18.7 ± 2.8%), and this was accompanied by a decrease in α1-NKA protein expression (-33.4 ± 11.8% and -39.4 ± 11.2%). NOD2 activation upregulated NKA activity (12.2 ± 5.1%) and α1-NKA mRNA levels (6.8 ± 1.6%) in Caco-2 cells. In summary, TLR2, TLR4, and TLR7 activation induce downregulation of NKA in IECs, whereas TLR5 and NOD2 activation has the opposite effect. A comprehensive understanding of the cross talk between TLRs, NOD2, and NKA is of utmost relevance for developing better IBD treatments.


Assuntos
Doenças Inflamatórias Intestinais , Receptor 2 Toll-Like , Humanos , Adenosina Trifosfatases/metabolismo , Células CACO-2 , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/farmacologia , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
20.
Int J Biol Macromol ; 230: 123208, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634796

RESUMO

In higher vertebrates, there is only a membranal TLR5 (TLR5M), which is crucial for host defense against microbes via MyD88 signaling pathway. In teleost, both TLR5M and soluble TLR5 (TLR5S) are identified, whereas the antibacterial mechanism of TLR5S is largely unknown. In this study, we studied the immune antibacterial mechanism of Cynoglossus semilaevis TLR5S homologue (named CsTLR5S). CsTLR5S, a 71.1 kDa protein, consists of 649 amino acid residues and shares 41.7 %-57.8 % overall sequence identities with teleost TLR5S homologues. CsTLR5S contains a single extracellular domain (ECD) composed of 12 leucine-rich repeats. CsTLR5S expression was constitutively identified and upregulated by bacterial infection in tissues. In vitro recombinant CsTLR5S (rCsTLR5S) could interact with bacteria and tongue sole rTLR5M (rCsTLR5M). Furthermore, rCsTLR5S could bind to the membranal CsTLR5M of peripheral blood leukocytes (PBLs), which led to enhancing the activity and the antibacterial role of PBLs via Myd88-NF-κB pathway. In vivo rCsTLR5S could activate the Myd88-NF-κB pathway, facilitate the release of proinflammatory cytokines, and enhance the host antibacterial response against Vibrio harveyi. Moreover, the knockdown of CsTLR5M or the Myd88 inhibitor could significantly suppress the antibacterial effect of rCsTLR5S. Collectively, our findings added important insights into the TLR5S immune antibacterial property in a TLR5M-MyD88-dependent manner.


Assuntos
Doenças dos Peixes , Linguados , Animais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Leucócitos/metabolismo , Proteínas de Peixes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...